A spectral characterization of stochastic matrices
نویسندگان
چکیده
منابع مشابه
Spectral gap of doubly stochastic matrices generated from CUE
To a unitary matrix U we associate a doubly stochastic matrix M by taking the modulus squared of each element of U. To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M, we study the limiting distribution of the spectral gap of M when U is taken from the Circular Unitary Ensemble and the dimension N of U is taken to infin...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملSpectral gap of doubly stochastic matrices generated from equidistributed unitary matrices
To a unitary matrix U we associate a doubly stochastic matrix M by taking the squared modulus of each element of U . To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M , we study the limiting distribution of the spectral gap of M when U is taken from the circular unitary ensemble and the dimension N of U is taken to inf...
متن کاملSpectral operators of matrices
The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool to model many important applications involving structured low rank matrices within and beyond the optimization community. This trend can be credited to some extent to the exciting developments in emerging fields such as compressed sensing. The Löwner operator, which generates a matrix valu...
متن کاملOn a Spectral Property of Jacobi Matrices
Let J be a Jacobi matrix with elements bk on the main diagonal and elements ak on the auxiliary ones. We suppose that J is a compact perturbation of the free Jacobi matrix. In this case the essential spectrum of J coincides with [−2, 2], and its discrete spectrum is a union of two sequences {xj }, x + j > 2, x − j < −2, tending to ±2. We denote sequences {ak+1 − ak} and {ak+1 + ak−1 − 2ak} by ∂...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1968
ISSN: 0024-3795
DOI: 10.1016/0024-3795(68)90049-9